39 research outputs found

    An Identity Based Key Management Scheme in Wireless Sensor Networks

    Full text link
    Pairwise key establishment is one of the fundamental security services in sensor networks which enables sensor nodes in a sensor network to communicate securely with each other using cryptographic techniques. It is not feasible to apply traditional public key management techniques in resource-constrained sensor nodes, and also because the sensor nodes are vulnerable to physical capture. In this paper, we introduce a new scheme called the identity based key pre-distribution using a pseudo random function (IBPRF), which has better trade-off between communication overhead, network connectivity and resilience against node capture compared to the other key pre-distribution schemes. Our scheme can be easily adapted in mobile sensor networks. This scheme supports the addition of new sensor nodes after the initial deployment and also works for any deployment topology. In addition, we propose an improved version of our scheme to support large sensor networks.Comment: 7 pages, Published in Proceedings of 4th Asian International Mobile Computing Conference (AMOC 2006), Kolkata, India, pp. 70-76, January 4-7, 200

    A novel and efficient session spanning biometric and password based three-factor authentication protocol for consumer USB mass storage devices

    Get PDF
    This paper proposes a key agreement scheme after secure authentication to prevent the unauthorized access of the data stored in a Universal Serial Bus (USB) Mass Storage Device (MSD). Due to the system architecture of this proposed scheme, authorized users can store their data in a secure encrypted form after performing authentication. The novelty of this work is that users can retrieve the encrypted data in not only the current session but also across different sessions, thus reducing the required communications overhead. This paper then analyses the security of the proposed protocol through a formal analysis to demonstrate that the information has been stored securely and is also protected offering strong resilience to relevant security attacks. The computational and communication costs of the proposed scheme is analyzed and compared to related works to show that the proposed scheme has an improved tradeoff for computational cost, communication cost and security

    A software agent enabled biometric security algorithm for secure file access in consumer storage devices

    Get PDF
    In order to resist unauthorized access, consumer storage devices are typically protected using a low entropy password. However, storage devices are not fully protected against an adversary because the adversary can utilize an off-line dictionary attack to find the correct password and/or run an existing algorithm for resetting the existing password. In addition, a password protected device may also be stolen or misplaced allowing an adversary to easily retrieve all the stored confidential information from a removable storage device. In order to protect the consumer’s confidential information that has been stored, this paper proposes a mutual authentication and key negotiation protocol that can be used to protect the confidential information in the device. The functionality of the protocol enables the storage device to be secure against relevant security attacks. A formal security analysis using Burrows-Abadi-Needham (BAN) logic is presented to verify the presented algorithm. In addition, a performance analysis of the proposed protocol reveals a significantly reduced communication overhead compared to the relevant literature

    Real-time speech emotion analysis for smart home assistants

    Get PDF
    Artificial Intelligence (AI) based Speech Emotion Recognition (SER) has been widely used in the consumer field for control of smart home personal assistants, with many such devices on the market. However, with the increase in computational power, connectivity and the need to enable people to live in the home for longer though the use of technology, then smart home assistants that could detect human emotion will improve the communication between a user and the assistant enabling the assistant of offer more productive feedback. Thus, the aim of this work is to analyze emotional states in speech and propose a suitable method considering performance verses complexity for deployment in Consumer Electronics home products, and to present a practical live demonstration of the research. In this paper, a comprehensive approach has been introduced for the human speech-based emotion analysis. The 1-D convolutional neural network (CNN) has been implemented to learn and classify the emotions associated with human speech. The paper has been implemented on the standard datasets (emotion classification) Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and Toronto Emotional Speech Set database (TESS) (Young and Old). The proposed approach gives 90.48%, 95.79% and94.47% classification accuracies in the aforementioned datasets. We conclude that the 1-D CNN classification models used in speaker-independent experiments are highly effective in the automatic prediction of emotion and are ideal for deployment in smart home assistants to detect emotion

    A Three Factor Remote User Authentication Scheme Using Collision Resist Fuzzy Extractor in Single Server Environment

    No full text
    Due to rapid growth of online applications, it is needed to provide such a facility by which communicators can get the services by applying the applications in a secure way. As communications are done through an insecure channel like Internet, any adversary can trap and modify the communication messages. Only authentication procedure can overcome the aforementioned problem. Many researchers have proposed so many authentication schemes in this literature. But, this paper has shown that many of them are not usable in real world application scenarios because, the existing schemes cannot resist all the possible attacks. Therefore, this paper has proposed a three factor authentication scheme using hash function and fuzzy extractor. This paper has further analyzed the security of the proposed scheme using random oracle model. The analysis shows that the proposed scheme can resist all the possible attacks. Furthermore, comparison between proposed scheme and related existing schemes shows that the proposed scheme has better trade-off among storage, computational and communication costs
    corecore